- Ionic diffusion and proton transfer in aqueous solutions of alkali me…
Počet záznamů: 1  

Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts

  1. 1.
    SYSNO ASEP0485594
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevIonic diffusion and proton transfer in aqueous solutions of alkali metal salts
    Tvůrce(i) Cassone, Giuseppe (BFU-R) ORCID, RID
    Creazzo, F. (IT)
    Giaquinta, P.V. (IT)
    Šponer, Jiří (BFU-R) RID, ORCID
    Saija, F. (IT)
    Celkový počet autorů5
    Zdroj.dok.Physical Chemistry Chemical Physics. - : Royal Society of Chemistry - ISSN 1463-9076
    Roč. 19, č. 31 (2017), s. 20420-20429
    Poč.str.10 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovainitio molecular-dynamics ; density-functional theory ; electric-fields ; liquid water
    Vědní obor RIVCF - Fyzikální chemie a teoretická chemie
    Obor OECDPhysical chemistry
    Institucionální podporaBFU-R - RVO:68081707
    UT WOS000407763700011
    DOI https://doi.org/10.1039/c7cp03663a
    AnotaceWe report on a series of ab initio molecular dynamics investigations on LiCl, NaCl, and KCl aqueous solutions under the effect of static electric fields. We have found that although in low-to-moderate field intensity regimes the well-known sequence of cationic mobilities mu(K+) > mu(Na+) > mu(Li+) (i.e., the bigger the cation the higher the mobility) is recovered, from intense field strengths this intuitive rule is no longer verified. In fact, field-induced water molecular dissociations lead to more complex phenomena regulating the standard migration properties of the simplest monovalent cations. The water dissociation threshold is lowered from 0.35 V angstrom(-1) to 0.25 V angstrom(-1) by the presence of charged species in all samples. However, notwithstanding a one-stage process of water ionization and proton conduction takes place at 0.25 V angstrom(-1) in the electrolyte solutions where structure maker' cations are present (i.e., LiCl and NaCl), the KCl aqueous solution shows some hindrance in establishing a proton conductive regime, which is characterized by the same proton conduction threshold of neat water (i.e., 0.35 V angstrom(-1)). In addition, it turns out that protons flow easily in the LiCl (sp = 3.0 S cm(-1)) solution and then in descending order in the NaCl (sp = 2.5 S cm(-1)) and KCl (sp = 2.3 S cm(-1)) electrolyte solutions. The protonic conduction efficiency is thus inversely proportional to the ionic radii of the cations present in the samples. Moreover, Cl- anions act as a sort of protonic well for high field intensities, further lowering the overall proton transfer efficiency of the aqueous solutions. As a consequence, all the recorded protonic conductivities are lower than that for neat water (sp = 7.8 S cm(-1)), which strongly indicates that devices exploiting the proton transfer ability should be designed so as to minimize the presence of ionic impurities.
    PracovištěBiofyzikální ústav
    KontaktJana Poláková, polakova@ibp.cz, Tel.: 541 517 244
    Rok sběru2018
Počet záznamů: 1  

Metadata v repozitáři ASEP jsou licencována pod licencí CC0.

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.