Počet záznamů: 1  

On model order reduction of parameter-dependent particle laden flows

  1. 1.
    0602981 - ÚT 2025 eng A - Abstract
    Kovárnová, Anna - Isoz, Martin
    On model order reduction of parameter-dependent particle laden flows.
    [COMPUTATIONAL MECHANICS 2024 conference with international participation /39./. Hotel Srní, 04.11.2024-06.11.2024]
    Method of presentation: Přednáška
    Institutional support: RVO:61388998
    Keywords : model order reduction * shifted proper orthogonal decomposition * CFD-DEM
    OECD category: Applied mathematics

    Fully resolved CFD-DEM simulations of particle-laden flow (PLFs) are computationally intensive, which strongly limits their usability for optimizations or parametric studies. Still, the computational costs can be decreased by methods of model order reduction (MOR) that replace the original model with a low-dimensional reduced order model (ROM) in a controlled manner and increase its applicability. In our work, we employ the shifted proper orthogonal decomposition (sPOD), a method tailored for MOR of transport-dominated systems, of which PLFs are an example, and combine it with a regression using artificial neural networks to obtain ROM continuous in time and parameter. The approach is an a posteriori one, i.e., PLFs for several parameter values are simulated using our OpenHFDIB-DEM solver (see the talk of M. Isoz) and the obtained solutions are used for the preparation of the ROM, which is then able to quickly predict solutions for previously unseen parameter values.
    Permanent Link: https://hdl.handle.net/11104/0361344
     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.