Počet záznamů: 1  

Relating the cut distance and the weak* topology for graphons

  1. 1.
    0536782 - MÚ 2022 RIV US eng J - Článek v odborném periodiku
    Doležal, Martin - Grebík, Jan - Hladký, Jan - Rocha, Israel - Rozhoň, Václav
    Relating the cut distance and the weak* topology for graphons.
    Journal of Combinatorial Theory. B. Roč. 147, March (2021), s. 252-298. ISSN 0095-8956
    Grant CEP: GA ČR(CZ) GA17-27844S; GA ČR GF17-33849L; GA ČR(CZ) GJ18-01472Y; GA ČR GJ16-07822Y
    Institucionální podpora: RVO:67985840 ; RVO:67985807
    Klíčová slova: graphon * compactness
    Kód oboru RIV: BA - Obecná matematika; BA - Obecná matematika (UIVT-O)
    Obor OECD: Pure mathematics; Pure mathematics (UIVT-O)
    Impakt faktor: 1.306, rok: 2019
    https://doi.org/10.1016/j.jctb.2020.04.003

    The theory of graphons is ultimately connected with the so-called cut norm. In this paper, we approach the cut norm topology via the weak* topology (when considering a predual of L1-functions). We prove that a sequence W1,W2,W3,… of graphons converges in the cut distance if and only if we have equality of the sets of weak* accumulation points and of weak* limit points of all sequences of graphons W′1,W′2,W′3,… that are weakly isomorphic to W1,W2,W3,…. We further give a short descriptive set theoretic argument that each sequence of graphons contains a subsequence with the property above. This in particular provides an alternative proof of the theorem of Lovász and Szegedy about compactness of the space of graphons. We connect these results to 'multiway cut' characterization of cut distance convergence from [Ann. of Math. (2) 176 (2012), no. 1, 151-219]. These results are more naturally phrased in the Vietoris hyperspace K over graphons with the weak* topology.
    Trvalý link: http://hdl.handle.net/11104/0314532
    Název souboruStaženoVelikostKomentářVerzePřístup
    Dolezal.pdf5710.2 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1