Počet záznamů: 1  

Singly generated quasivarieties and residuated structures

  1. 1.
    0505969 - ÚI 2020 US eng V - Výzkumná zpráva
    Moraschini, Tommaso - Raftery, J.G. - Wannenburg, J. J.
    Singly generated quasivarieties and residuated structures.
    Cornell University, 2019. arXiv.org e-Print archive, arXiv:1902.04159 [math.LO].
    Grant CEP: GA MŠMT(CZ) EF17_050/0008361
    GRANT EU: European Commission(XE) 689176 - SYSMICS
    Institucionální podpora: RVO:67985807
    Obor OECD: Pure mathematics
    Web výsledku:
    https://arxiv.org/abs/1902.04159

    Generalizing a theorem of Campercholi, we characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures (as opposed to an elementary class). This allows us to strengthen a result of Isbell, as follows: in any prevariety having at most s non-logical symbols and an axiomatization requiring at most m variables, if the epimorphisms into structures with at most m + s + aleph0 elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable "bridge theorems", matching the surjectivity of all epimorphisms in the algebraic counterpart of a logic L with suitable infinitary definability properties of L, while not making the standard but awkward assumption that L comes furnished with a proper class of variables.

    Trvalý link: http://hdl.handle.net/11104/0297289

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.