Počet záznamů: 1  

Flux reconstructions in the Lehmann-Goerisch method for lower bounds on eigenvalues

  1. 1.
    0489966 - MÚ 2019 RIV NL eng J - Článek v odborném periodiku
    Vejchodský, Tomáš
    Flux reconstructions in the Lehmann-Goerisch method for lower bounds on eigenvalues.
    Journal of Computational and Applied Mathematics. Roč. 340, October 1 (2018), s. 676-690. ISSN 0377-0427. E-ISSN 1879-1778
    Institucionální podpora: RVO:67985840
    Klíčová slova: eigenproblem * guaranteed * finite element method
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 1.883, rok: 2018

    The standard application of the Lehmann-Goerisch method for lower bounds on eigenvalues of symmetric elliptic second-order partial differential operators relies on determination of fluxes. These fluxes are usually computed by solving a global saddle point problem. In this paper we propose a simpler global problem that yields these fluxes of the same quality. The simplified problem is smaller, it is positive definite, and any H(div) conforming finite elements, such as Raviart-Thomas elements, can be used for its solution. In addition, these global problems can be split into a number of independent local problems on patches, which allows for trivial parallelization. The computational performance of these approaches is illustrated by numerical examples for Laplace and Steklov type eigenvalue problems. These examples also show that local flux reconstructions enable computation of lower bounds on eigenvalues on considerably finer meshes than the traditional global reconstructions.
    Trvalý link: http://hdl.handle.net/11104/0284261
    Název souboruStaženoVelikostKomentářVerzePřístup
    Vejchodsky1.pdf9462.7 KBVydavatelský postprintvyžádat
Počet záznamů: 1