Počet záznamů: 1  

High Order Time Discretization for DAEs with Efficient Block Preconditioners

  1. 1. 0482341 - UGN-S 2018 RIV US eng C - Konferenční příspěvek (zahraniční konf.)
    Blaheta, Radim - Axelsson, Owe - Luber, Tomáš
    High Order Time Discretization for DAEs with Efficient Block Preconditioners.
    Proceedings of the international conference on numerical analysis and applied mathematics 2016 (ICNAAM-2016). Melville: American Institute of Physics, 2017, č. článku UNSP 340002-1. AIP Conference Proceedings, 1863. ISBN 978-0-7354-1538-6. ISSN 0094-243X.
    [International Conference on Numerical Analysis and Applied Mathematics (ICNAAM). Rhodes (GR), 19.09.2016-25.09.2016]
    Grant CEP: GA MŠk LD15105; GA MŠk LQ1602
    Institucionální podpora: RVO:68145535
    Klíčová slova: time dependent partial differential equations (PDEs) * parallelizable preconditioners * two step Radau time integration method
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Applied mathematics

    The contribution considers parabolic PDEs describing uniphysics problems like nonstationary Darcy flow and their
    extension to multiphysics like poroelasticity problems. Discretization is assumed by mixed and standard/mixed finite elements
    in space and stable higher order methods in time. Parallelizable preconditioners for iterative solution of linear systems arising
    within the time steps are suggested and analysed. The analysis shows that the preconditioned systems are diagonalizable with very
    localized spectra. It indicates possible very fast convergence of Krylov type methods, which was also confirmed by numerical
    experiments with two step Radau time integration method.
    Trvalý link: http://hdl.handle.net/11104/0277754
    Název souboruStaženoVelikostKomentářVerzePřístup
    UGN_0482341.pdf183.1 KBAutorský preprintpovolen