Počet záznamů: 1  

Unsaturated deformable porous media flow with thermal phase transition

  1. 1.
    0481815 - MU-W 2018 RIV SG eng J - Článek v odborném periodiku
    Krejčí, Pavel - Rocca, E. - Sprekels, J.
    Unsaturated deformable porous media flow with thermal phase transition.
    Mathematical Models and Methods in Applied Sciences. Roč. 27, č. 14 (2017), s. 2675-2710. ISSN 0218-2025
    Grant CEP: GA ČR(CZ) GA15-12227S
    Institucionální podpora: RVO:67985840
    Klíčová slova: porous media * phase transitions * existence of solutions
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Applied mathematics
    Impakt faktor: 3.319, rok: 2017
    http://www.worldscientific.com/doi/abs/10.1142/S0218202517500555

    In this paper, a continuum model is introduced for fluid flow in a deformable porous medium, where the fluid may undergo phase transitions. Typically, such problems arise in modeling liquid–solid phase transformations in groundwater flows. The system of equations is derived here from the conservation principles for mass, momentum, and energy and from the Clausius–Duhem inequality for entropy. It couples the evolution of the displacement in the matrix material, of the capillary pressure, of the absolute temperature, and of the phase fraction. Mathematical results are proved under the additional hypothesis that inertia effects and shear stresses can be neglected. For the resulting highly nonlinear system of two PDEs, one ODE and one ordinary differential inclusion with natural initial and boundary conditions, existence of global in time solutions are proved by means of cut-off techniques and suitable Moser-type estimates.
    Trvalý link: http://hdl.handle.net/11104/0277287
    Název souboruStaženoVelikostKomentářVerzePřístup
    Krejci1.pdf2357.2 KBVydavatelský postprintvyžádat