Počet záznamů: 1  

Metric Scott analysis

  1. 1.
    0476964 - MU-W 2018 US eng J - Článek v odborném periodiku
    Ben Yaacov, I. - Doucha, Michal - Nies, A. - Tsankov, T.
    Metric Scott analysis.
    Advances in Mathematics. Roč. 318, October (2017), s. 46-87. ISSN 0001-8708
    Institucionální podpora: RVO:67985840
    Klíčová slova: continuous logic * infinitary logic * Scott sentence
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 1.372, rok: 2017
    http://www.sciencedirect.com/science/article/pii/S0001870816309896?via%3Dihub

    We develop an analogue of the classical Scott analysis for metric structures and infinitary continuous logic. Among our results are the existence of Scott sentences for metric structures and a version of the López-Escobar theorem. We also derive some descriptive set theoretic consequences: most notably, that isomorphism on a class of separable structures is a Borel equivalence relation iff their Scott rank is uniformly bounded below omega1. Finally, we apply our methods to study the Gromov–Hausdorff distance between metric spaces and the Kadets distance between Banach spaces, showing that the set of spaces with distance 0 to a fixed space is a Borel set.
    Trvalý link: http://hdl.handle.net/11104/0273370
    Název souboruStaženoVelikostKomentářVerzePřístup
    Doucha1.pdf1618.7 KBVydavatelský postprintvyžádat