Počet záznamů: 1  

Microstructure and Properties of Spark Plasma Sintered Al-Zn-Mg-Cu Alloy

  1. 1.
    0473171 - ÚFP 2017 RIV PL eng J - Článek v odborném periodiku
    Becker, H. - Dopita, M. - Stráská, J. - Málek, P. - Vilémová, Monika - Rafaja, D.
    Microstructure and Properties of Spark Plasma Sintered Al-Zn-Mg-Cu Alloy.
    Acta Physica Polonica A. Roč. 128, č. 4 (2015), s. 602-605. ISSN 0587-4246. E-ISSN 1898-794X.
    [International Symposium on Physics of Materials (ISPMA) /13./. Prague, 31.08.2014-04.09.2014]
    Grant CEP: GA ČR GB14-36566G
    Institucionální podpora: RVO:61389021
    Klíčová slova: mechanical properties * alloying elements
    Kód oboru RIV: JK - Koroze a povrchové úpravy materiálů
    Impakt faktor: 0.525, rok: 2015

    The microstructure of an aluminum alloy containing 53 wt% Zn, 2.1 wt% Mg and 1.3 wt% Cu as main alloying elements has been studied with the focus on the precipitation behavior during the spark plasma sintering process. The starting material was an atomized Al-Zn-Mg-Cu powder with the particle size below 50 mu m. The particles showed a solidification microstructure from cellular to columnar or equiaxed dendritic morphology with a large fraction of the alloying elements segregated in form of intermetallic phases, mainly (Zn, Al, Cu) 4 9 Mg 3 2 and Mg 2 (Zn, Al, Cu) 1 1, at the cell and dendrite boundaries. The microstructure of the sintered specimens followed the microstructure of the initial powder. However, Mg(Zn, Al, Cu) 2 precipitates evolve at the expense of the initial precipitate phases. The precipitates which were initially continuously distributed along the intercellular and interdendritic boundaries form discrete chain-like structures in the sintered samples. Additionally, fine precipitates created during the sintering process evolve at the new low-angle boundaries. The large fraction of precipitates at the grain boundaries and especially at the former particle boundaries could not be solved into the matrix applying a usual solid solution heat treatment. A bending test reveals low ductility and strength. The mechanical properties suffer from the precipitates at former particle boundaries leading to fracture after an outer fiber tensile strain of 3.8%.
    Trvalý link: http://hdl.handle.net/11104/0270340

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.