Počet záznamů: 1  

Fractal approach towards power-law coherency to measure cross-correlations between time series

  1. 1. 0473066 - UTIA-B 2018 RIV NL eng J - Článek v odborném periodiku
    Krištoufek, Ladislav
    Fractal approach towards power-law coherency to measure cross-correlations between time series.
    Communications in Nonlinear Science and Numerical Simulation. Roč. 50, č. 1 (2017), s. 193-200. ISSN 1007-5704
    Grant CEP: GA ČR(CZ) GP14-11402P
    Institucionální podpora: RVO:67985556
    Klíčová slova: power-law coherency * power-law cross-correlations * correlations
    Kód oboru RIV: AH - Ekonomie
    Obor OECD: Applied Economics, Econometrics
    Impakt faktor: 3.181, rok: 2017
    http://library.utia.cas.cz/separaty/2017/E/kristoufek-0473066.pdf

    We focus on power-law coherency as an alternative approach towards studying power law cross-correlations between simultaneously recorded time series. To be able to study empirical data, we introduce three estimators of the power-law coherency parameter Hp based on popular techniques usually utilized for studying power-law cross-correlations detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample properties study, we focus on the bias, variance and mean squared error of the estimators. We find that the DMCA-based method is the safest choice among the three. The HXA method is reasonable for long time series with at least 104 observations, which can be easily attainable in some disciplines but problematic in others. The DCCA-based method does not provide favorable properties which even deteriorate with an increasing time series length. The paper opens a new venue towards studying cross-correlations between time series.
    Trvalý link: http://hdl.handle.net/11104/0271360