Počet záznamů: 1  

Reaction and Transport Effects in the Heterogeneous Systems for Lean Gas Purification.

  1. 1.
    0471819 - ÚCHP 2017 RIV SK eng J - Článek v odborném periodiku
    Hartman, Miloslav - Svoboda, Karel - Pohořelý, Michael - Šyc, Michal - Skoblia, S. - Chyou, Y.-P.
    Reaction and Transport Effects in the Heterogeneous Systems for Lean Gas Purification.
    Chemical Papers. Roč. 71, č. 3 (2017), s. 563-577. ISSN 0366-6352
    Grant CEP: GA ČR(CZ) GC14-09692J
    Grant ostatní:NSC(TW) 102WBS0300011; NSC(TW) 103-2923-E-042A-001-MY3
    Institucionální podpora: RVO:67985858
    Klíčová slova: differential reactor * gas chemisorption * alkaline solids
    Kód oboru RIV: CI - Průmyslová chemie a chemické inženýrství
    Obor OECD: Environmental sciences (social aspects to be 5.7)
    Impakt faktor: 0.963, rok: 2017

    Sorption of hydrogen chloride gas by active soda and that of hydrogen sulfide gas by calcium oxide are explored by experiment as promising means of removing these detrimental contaminants from fuel gas: active Na2CO3 was prepared by the calcination of commercial NaHCO3 at 200 °C; reactive CaO was formed by decomposing a fine-grained, high-calcium limestone at 830 °C. Techniques with a differential reactor were employed to explore the rate of reaction of HCl with Na2CO3 at 500 °C and that of H2S with CaO at 800 °C. Time-resolved data on the sorbents' conversion were collected as a function of mean particle size in the range between 0.285 and 1.12 mm. The surface reaction constants, deduced via the tractable model from the initial reaction rates of the two reactions, slightly increase with the increasing particle size. The proposed correlations enable to interpolate or cautiously extrapolate to other isotropic, irregularly shaped solids. The effective diffusivities educed by means of the model from the experimental curves decrease significantly with the increasing conversion and are affected by the particle size in both sorptions. The developed reaction rate equations can conveniently be applied to the design and simulation of the deep dechloridization and the bulk desulfurization of hot producer gas.
    Trvalý link: http://hdl.handle.net/11104/0269404
    Název souboruStaženoVelikostKomentářVerzePřístup
    0471819.pdf112.6 MBAutorský postprintpovolen
     
Počet záznamů: 1