Počet záznamů: 1  

Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

  1. 1.
    0471531 - FZÚ 2017 RIV US eng J - Článek v odborném periodiku
    Seif, J. - Descoeudres, A. - Nogay, G. - Hänni, S. - de Nicolas, S.M. - Holm, N. - Geissbühler, J. - Hessler-Wyser, A. - Duchamp, M. - Dunin-Borkowski, R.E. - Ledinský, Martin - De Wolf, S. - Ballif, C.
    Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells.
    IEEE Journal of Photovoltaics. Roč. 6, č. 5 (2016), s. 1132-1140. ISSN 2156-3381
    Grant CEP: GA MŠk LM2015087
    Institucionální podpora: RVO:68378271
    Klíčová slova: microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells
    Kód oboru RIV: BM - Fyzika pevných látek a magnetismus
    Impakt faktor: 3.712, rok: 2016

    Carrier collection in silicon heterojunction (SHJ) solar cells is usually achieved by doped amorphous silicon layers of a few nanometers, deposited at opposite sides of the crystalline silicon wafer. These layers are often defect-rich, resulting in modest doping efficiencies, parasitic optical absorption when applied at the front of solar cells, and high contact resistivities with the adjacent transparent electrodes. Their substitution by equally thin doped nanocrystalline silicon layers has often been argued to resolve these drawbacks. However, low-temperature deposition of highly crystalline doped layers of such thickness on amorphous surfaces demands sophisticated deposition engineering. In this paper, we review and discuss different strategies to facilitate the nucleation of nanocrystalline silicon layers and assess their compatibility with SHJ solar cell fabrication. We also implement the obtained layers into devices, yielding solar cells with fill factor values of over 79% and efficiencies of over 21.1%, clearly underlining the promise this material holds for SHJ solar cell applications.
    Trvalý link: http://hdl.handle.net/11104/0268904
Počet záznamů: 1