Počet záznamů: 1  

Spectral Analysis of a Quantum System with a Double Line Singular Interaction

  1. 1. 0428327 - UJF-V 2015 RIV JP eng J - Článek v odborném periodiku
    Kondej, S. - Krejčiřík, David
    Spectral Analysis of a Quantum System with a Double Line Singular Interaction.
    Publications of the Research Institute for Mathematical Sciences. Roč. 49, č. 4 (2013), s. 831-859. ISSN 0034-5318
    Grant CEP: GA ČR GAP203/11/0701
    Institucionální podpora: RVO:61389005
    Klíčová slova: Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance
    Kód oboru RIV: BE - Teoretická fyzika
    Impakt faktor: 0.614, rok: 2013

    We consider a non-relativistic quantum particle interacting with a singular potential supported by two parallel straight lines in the plane. We locate the essential spectrum under the hypothesis that the interaction asymptotically approaches a constant value, and find conditions which guarantee either the existence of discrete eigenvalues or Hardy-type inequalities. For a class of our models admitting mirror symmetry, we also establish the existence of embedded eigenvalues and show that they turn into resonances after introducing a small perturbation.
    Trvalý link: http://hdl.handle.net/11104/0233680