Počet záznamů: 1  

Binary Factorization of Textual Data by Hopfield-Like Neural Network

  1. 1.
    0105199 - UIVT-O 20040190 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Frolov, A. A. - Húsek, Dušan - Polyakov, P.Y. - Řezanková, H. - Snášel, Václav
    Binary Factorization of Textual Data by Hopfield-Like Neural Network.
    [Binární faktorizace textových dat pomocí neuronové sítě Hopfieldova typu.]
    COMPSTAT Proceedings in Computational Statistics. Heidelberg: Physica-Verlag, 2004 - (Antoch, J.), s. 1035-1041. ISBN 978-3-7908-1554-2.
    [COMPSTAT 2004. Symposium /16./. Prague (CZ), 23.08.2004-27.08.2004]
    Grant CEP: GA MŠk LN00B096
    Klíčová slova: neural networks * binary factorization * application
    Kód oboru RIV: BA - Obecná matematika

    We suggest a procedure of binary factorization of signals of large dimensional complexity. The procedure is based on the search of attractors in Hopfield-like associative memory. Starting from random initial state, network activity stabilizes in some attractor which corresponds to one of factors 9a true attractor0 or one of spurious attractors. Separation of true and spurious attractors is based on calculation of their Lyapunov function. Being applied to textual data the procedure showes sensitivity to the context in which the words are used.

    Navrhována je procedura binární faktorizace signálů velké dimenze. Procedura je založena na vyhledávání atraktorů v neuronové asociativní paměti Hopfieldova typu. Dynamika sítě zajistí, že systém, který se z počátku nalézá v náhodně vybraném stavu, se stabilizuje v jednom z atraktorů, který odpovídá buď faktoru (pravý atraktor) nebo v jednom z lživých atraktorů (nepravý atraktor). Separace faktorů pravých a nepravých je založena na výpočtu průběhu Lyapunovovy funkce v procesu dynamiky sítě. Aplikace na textová data experimentálně ukázala citlivost ke kontextu, ve kterém se slova nacházejí.
    Trvalý link: http://hdl.handle.net/11104/0012446

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.