Počet záznamů: 1

Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems

  1. 1.
    0368347 - MU-W 2012 RIV DE eng J - Článek v odborném periodiku
    Hlaváček, Ivan - Lovíšek, J.
    Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems.
    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik. Roč. 91, č. 9 (2011), s. 711-723 ISSN 0044-2267
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: functionally graded plate * optimal design
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.863, rok: 2011
    http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000119/abstract

    Optimal control problems are considered for a functionally graded circular plate with inner rigid obstacles. Axisymmetric bending and stretching of the plate is studied using the classical Kirchhoff theory. The plate material is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Four optimal design problems are considered for the elastic circular plate. The state problem is represented by a variational inequality with a monotone operator and the design variables (i.e., the thickness and the exponent of the power-law) influence both the coefficients and the set of admissible state functions. We prove the existence of a solution to the above-mentioned optimal design problems.
    Trvalý link: http://hdl.handle.net/11104/0202718
    Název souboruStaženoVelikostKomentářVerzePřístup
    Hlavacek.pdf1311.2 KBVydavatelský postprintvyžádat