Počet záznamů: 1

The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide

  1. 1.
    0367928 - UJF-V 2013 RIV US eng J - Článek v odborném periodiku
    Krejčiřík, David - Zuazua, E.
    The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide.
    Journal of Differential Equations. Roč. 250, č. 5 (2011), s. 2334-2346 ISSN 0022-0396
    Grant CEP: GA MŠk LC06002
    Výzkumný záměr: CEZ:AV0Z10480505
    Klíčová slova: Laplacian * Dirichlet and Neumann boundary conditions * Twist
    Kód oboru RIV: BE - Teoretická fyzika
    Impakt faktor: 1.277, rok: 2011

    We consider the heat equation in a straight strip, subject to a combination of Dirichlet and Neumann boundary conditions. We show that a switch of the respective boundary conditions leads to an improvement of the decay rate of the heat semigroup of the order of t(-1/2). The proof employs similarity variables that lead to a non-autonomous parabolic equation in a thin strip contracting to the real line, that can be analysed on weighted Sobolev spaces in which the operators under consideration have discrete spectra.
    Trvalý link: http://hdl.handle.net/11104/0202435