Počet záznamů: 1

Stability analysis of the Acrobot walking with observed geometry

  1. 1.
    0364864 - UTIA-B 2012 RIV IT eng C - Konferenční příspěvek (zahraniční konf.)
    Anderle, Milan - Čelikovský, Sergej
    Stability analysis of the Acrobot walking with observed geometry.
    Proceedings of the 18th IFAC World Congress. Milano: IFAC - International Fedaration of Automatic Control, 2011 - (Bittanti; Cenedese; Zampieri), od 1046-do 1051. ISBN 978-3-902661-93-7.
    [The 18th IFAC World Congress. Milano (IT), 28.08.2011-02.09.2011]
    Grant CEP: GA MŠk LA09026
    Grant ostatní:GA ČR(CZ) GAP103/10/0628
    Výzkumný záměr: CEZ:AV0Z10750506
    Klíčová slova: Walking robots * Nonlinear control * Stability analysis
    Kód oboru RIV: BC - Teorie a systémy řízení

    This paper aims to extend of the previously developed analytical design for the Acrobot walking. The corresponding state feedback controller is completed in this paper by an observer to estimate some states of the Acrobot. Both the controller and the observer are based on the partial exact feedback linearization of order 3. The feedback controller and the observer are extended for the tracking of the cyclic walking-like trajectory in order to demonstrate the cyclic Acrobot walking. The cyclic walking-like trajectory starts continuous phase from certain initial conditions, that at the end of the step makes an impact and after the impact it reaches the same initial conditions as at the beginning of the step. This cyclic motion of the Acrobot enable us to prove the stability of the feedback tracking with the observer numericaly by the method of Poincar e mappings.
    Trvalý link: http://hdl.handle.net/11104/0200234