Počet záznamů: 1

On Efficient Numerical Approximation of the Bilinear Form c* A(-1)b

  1. 1.
    0358802 - UIVT-O 2012 RIV US eng J - Článek v odborném periodiku
    Strakoš, Z. - Tichý, Petr
    On Efficient Numerical Approximation of the Bilinear Form c* A(-1)b.
    SIAM Journal on Scientific Computing. Roč. 33, č. 2 (2011), s. 565-587 ISSN 1064-8275
    Grant CEP: GA AV ČR IAA100300802
    Grant ostatní: GA ČR(CZ) GA201/09/0917; GA AV ČR(CZ) M100300901
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: bilinear forms * scattering amplitude * method of moments * Krylov subspace methods * conjugate gradient method * biconjugate gradient method * Lanczos algorithm * Arnoldi algorithm * Gauss-Christoffel quadrature * model reduction
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.569, rok: 2011

    Let $A$ be a nonsingular complex matrix and $b$ and $c$ be complex vectors. We investigates approaches for efficient approximations of the bilinear form $c^*A^{-1}b$. Equivalently, we wish to approximate the scalar value $c^*x$, where $x$ solves the linear system $Ax = b$. Here the matrix $A$ can be very large or its elements can be too costly to compute so that $A$ is not explicitly available and it is used only in the form of the matrix-vector product. Therefore a direct method is not an option. For $A$ Hermitian positive definite, $b^*A^{-1}b$ can be efficiently approximated as a by-product of the conjugate-gradient iterations, which is mathematically equivalent to the matching moment approximations computed via the Gauss–Christoffel quadrature. We propose a new method using the biconjugate gradient iterations which is applicable to the general complex case. The proposed approach is compared with existing ones using analytic arguments and numerical experiments.
    Trvalý link: http://hdl.handle.net/11104/0196736
    Název souboruStaženoVelikostKomentářVerzePřístup
    0358802.pdf2956.2 KBAutorský preprintpovolen