Počet záznamů: 1

Preconditioning of matrices partitioned in 2 x 2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM

  1. 1.
    0350871 - UGN-S 2011 RIV GB eng J - Článek v odborném periodiku
    Axelsson, Owe - Blaheta, Radim
    Preconditioning of matrices partitioned in 2 x 2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM.
    Numerical Linear Algebra with Applications. Roč. 17, č. 5 (2010), s. 787-810 ISSN 1070-5325
    Grant CEP: GA ČR GA105/09/1830
    Výzkumný záměr: CEZ:AV0Z30860518
    Klíčová slova: iterative solution methods * saddle point problems * preconditioning block matrices * domain decomposition * heterogeneous problems * regularization
    Kód oboru RIV: JC - Počítačový hardware a software
    Impakt faktor: 1.163, rok: 2010
    http://onlinelibrary.wiley.com/doi/10.1002/nla.v17:5/issuetoc

    A general framework for constructing preconditioners for 2 x 2 block matrices is presented, and eigenvalue bounds of the preconditioned matrices are derived The results are applied both for positive-definite problems and for saddle point matrices of regularized forms. Eigenvalues and minimal polynomials for certain limit cases are derived A domain decomposition method, with overlap, is used to solve the pivot block of the regularized matrix. Special attention is paid to problems with heterogeneous coefficients Copyright (C) 2010 John Wiley & Sons, Ltd.
    Trvalý link: http://hdl.handle.net/11104/0190754
    Název souboruStaženoVelikostKomentářVerzePřístup
    UGN_0350871.pdf10187.8 KBVydavatelský postprintvyžádat