Počet záznamů: 1

Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement

  1. 1.
    0349037 - UFCH-W 2011 RIV GB eng J - Článek v odborném periodiku
    Humpolíčková, Jana - Benda, Aleš - Macháň, Radek - Enderlein, J. - Hof, Martin
    Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement.
    Physical Chemistry Chemical Physics. Roč. 12, č. 39 (2010), s. 12457-12465 ISSN 1463-9076
    Grant CEP: GA MŠk(CZ) LC06063; GA AV ČR KJB400400904; GA AV ČR GEMEM/09/E006
    Výzkumný záměr: CEZ:AV0Z40400503
    Klíčová slova: fluorescence microscopy * dunamic saturation optical microscopy * fluorescence
    Kód oboru RIV: CF - Fyzikální chemie a teoretická chemie
    Impakt faktor: 3.454, rok: 2010

    Fluorescence microscopy has become one of the most rapidly developing observation techniques in the field of molecular biology, since its high sensitivity, contrast and labeling specificity together with being non-invasive fulfill the most important requirements of live cell imaging. The biggest limitation of the technique seems to be the spatial resolution which is, based on Abbe's diffraction law, restricted to some hundreds of nanometres. Recently, various approaches have been developed that overcome the limit imposed by the diffraction barrier and these methods currently lead the development in the field of fluorescence microscopy. In this contribution, we present dynamic saturation optical microscopy (DSOM) a new technique that monitors the temporal decay of the excited singlet state due to a dark state formation. By mapping the intensity dependent decay kinetics, enhanced resolution images can be obtained.
    Trvalý link: http://hdl.handle.net/11104/0189381