Počet záznamů: 1

Primal Interior Point Method for Minimization of Generalized Minimax Functions

  1. 1.
    0347293 - UIVT-O 2011 RIV CZ eng J - Článek v odborném periodiku
    Lukšan, Ladislav - Matonoha, Ctirad - Vlček, Jan
    Primal Interior Point Method for Minimization of Generalized Minimax Functions.
    Kybernetika. Roč. 46, č. 4 (2010), s. 697-721 ISSN 0023-5954
    Grant CEP: GA ČR GA201/09/1957
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: unconstrained optimization * large-scale optimization * nonsmooth optimization * generalized minimax optimization * interior-point methods * modified Newton methods * variable metric methods * global convergence * computational experiments
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.461, rok: 2010
    http://dml.cz/handle/10338.dmlcz/140779

    In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning its implementation covering numerical differentiation, variable metric updates, and a barrier parameter decrease. Using standard weak assumptions, we prove that this algorithm is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we prove that it is globally convergent also for the logarithmic barrier. Finally, we present results of computational experiments confirming the efficiency of the primal interior point method for special cases of generalized minimax problems.
    Trvalý link: http://hdl.handle.net/11104/0188099
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kybernetika_46-2010-4_8.pdf0370.8 KBVydavatelský postprintpovolen