Počet záznamů: 1

Some Comparisons of Model Complexity in Linear and Neural-Network Approximation

  1. 1.
    0345940 - UIVT-O 2011 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Gnecco, G. - Kůrková, Věra - Sanguineti, M.
    Some Comparisons of Model Complexity in Linear and Neural-Network Approximation.
    Artificial Neural Networks – ICANN 2010. Vol. 3. Berlin: Springer, 2010 - (Diamantaras, K.; Duch, W.; Iliadis, L.), s. 358-367. Lecture Notes in Computer Science, 6354. ISBN 978-3-642-15824-7. ISSN 0302-9743.
    [ICANN 2010. International Conference on Artificial Neural Networks /20./. Thessaloniki (GR), 15.09.2010-18.09.2010]
    Grant CEP: GA MŠk OC10047
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: model complexity * neural networks * linear models
    Kód oboru RIV: IN - Informatika

    Capabilities of linear and neural-network models are compared from the point of view of requirements on the growth of model complexity with an increasing accuracy of approximation. The bounds are formulated in terms of singular numbers of certain operators induced by computational units and high-dimensional volumes of the domains of the functions to be approximated.
    Trvalý link: http://hdl.handle.net/11104/0187103
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0345940.pdf0212.2 KBVydavatelský postprintvyžádat