Počet záznamů: 1

Analysis of classical and spectral finite element spatial discretization in one-dimensional elastic wave propagation

  1. 1.
    0343033 - UT-L 2011 RIV CZ eng C - Konferenční příspěvek (zahraniční konf.)
    Kolman, Radek - Plešek, Jiří - Okrouhlík, Miloslav - Gabriel, Dušan
    Analysis of classical and spectral finite element spatial discretization in one-dimensional elastic wave propagation.
    Engineering Mechanics 2010. Prague: Institute of Thermomechanics AS CR, v. v. i., 2010 - (Zolotarev, I.), s. 72-87. ISBN 978-80-87012-26-0.
    [ENGINEERING MECHANICS 2010. Svratka (CZ), 10.05.2010-13.05.2010]
    Grant CEP: GA ČR(CZ) GA101/09/1630; GA ČR(CZ) GA101/07/1471; GA ČR GPP101/10/P376
    Výzkumný záměr: CEZ:AV0Z20760514
    Klíčová slova: dispersion * wave propagation * classical finite element
    Kód oboru RIV: BI - Akustika a kmity

    The spatial discretization of continuum by finite element method introduces the dispersion error to numerical solutions of stress wave propagation. For higher order finite elements there are the optical modes in the spectrum resulting in spurious oscillations of stress and velocity distributions near the sharp wavefront. Spectral finite elements are of h-type finite element, where nodes have special positions along the elements corresponding to the numerical quadrature schemes, but the displacements along element are approximated by Lagrangian interpolation polynomials. In this paper, the classical and Legendre and Chebyshev spectral finite elements are tested in the one-dimensional wave propagation in an elastic bar.
    Trvalý link: http://hdl.handle.net/11104/0185609