Počet záznamů: 1

Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill

  1. 1.
    0342595 - UTIA-B 2011 RIV US eng J - Článek v odborném periodiku
    Raftery, A. E. - Kárný, Miroslav - Ettler, P.
    Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill.
    Technometrics. Volume 52, Number 1 (2010), s. 52-66 ISSN 0040-1706
    Grant CEP: GA MŠk 1M0572; GA MŠk(CZ) 7D09008
    Výzkumný záměr: CEZ:AV0Z10750506
    Klíčová slova: prediction * rolling mills * Bayesian Dynamic Averaging
    Kód oboru RIV: BC - Teorie a systémy řízení
    Impakt faktor: 1.560, rok: 2010
    http://library.utia.cas.cz/separaty/2010/AS/karny-0342595.pdf http://library.utia.cas.cz/separaty/2010/AS/karny-0342595.pdf

    We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specied in terms of forgetting, leading to a highly parsimonious representation. As a special case, when the model and parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging, which we call recursive model averaging (RMA). The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay.
    Trvalý link: http://hdl.handle.net/11104/0185291