Počet záznamů: 1

Learning User Preferences for 2CP-Regression for a Recommender System

  1. 1.
    0338369 - UIVT-O 2010 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Eckhardt, Alan - Vojtáš, Peter
    Learning User Preferences for 2CP-Regression for a Recommender System.
    SOFSEM 2010. Theory and Practice of Computer Science. Berlin: Springer, 2010 - (van Leeuwen, J.; Muscholl, A.; Peleg, D.; Pokorný, J.; Rumpe, B.), s. 346-357. Lecture Notes in Computer Science, 5901. ISBN 978-3-642-11265-2. ISSN 0302-9743.
    [SOFSEM 2010. Conference on Current Trends in Theory and Practice of Computer Science /36./. Špindlerův Mlýn (CZ), 23.01.2010-29.01.2010]
    Grant CEP: GA AV ČR 1ET100300517; GA ČR GD201/09/H057
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: user preferences * machine learning * ordering
    Kód oboru RIV: IN - Informatika

    In this paper we deal with a task to learn a general user model from user ratings of a small set of objects. This general model is used to recommend top-k objects to the user. We consider several (also some new) alternatives of learning local preferences and several alternatives of aggregation (with or without 2CP-regression). The main contributions are evaluation of experiments on our prototype tool PrefWork with respect to several satisfaction measures and the proposal of method Peak for normalisation of numerical attributes. Our main objective is to keep the number of sample data which the user has to rate reasonable small.
    Trvalý link: http://hdl.handle.net/11104/0182161