Počet záznamů: 1

I-Fuzzy equivalence relations and I-fuzzy partitions

  1. 1.
    0322890 - UTIA-B 2009 RIV NL eng J - Článek v odborném periodiku
    Mesiar, Radko - Jayaram, B.
    I-Fuzzy equivalence relations and I-fuzzy partitions.
    [I-Fuzzy relácie ekvivalencie a I-Fuzzy rozklady.]
    Information Sciences. Roč. 179, č. 9 (2009), s. 1278-1297 ISSN 0020-0255
    Grant CEP: GA ČR GA402/08/0618
    Výzkumný záměr: CEZ:AV0Z10750506
    Klíčová slova: Conjunctor * Fuzzy equivalence relation * Fuzzy partition * Implicator * Semi-copula
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 3.291, rok: 2009
    http://library.utia.cas.cz/separaty/2009/E/mesiar-i-fuzzy equivalence relations and i-fuzzy partitions.pdf http://library.utia.cas.cz/separaty/2009/E/mesiar-i-fuzzy equivalence relations and i-fuzzy partitions.pdf

    A T-fuzzy equivalence relation is a fuzzy binary relation on a set X which is reflexive, symmetric and T-transitive for a t-norm T. In this work, we eploy a related form of C-transitivity, viz., I-transitivity, where I is an implicator. We show that although every I-fuzzy equivalence relation can be shown to be a C-fuzzy equivalence relation, there exist C-fuzzy equivalence relations that are not I-fuzzy equivalence relations and hence these concepts are not equivalent.

    Relace T-fuzzy ekvivalence je binární fuzzy relace na množině X, která je reflexivní, symetrická a T-tranzitivní pro t-normu T. V práci jsme zavedli tzv. I-transitivitu, související s C-tranzitivitou, kde I je implikátor. Ukázali jsme, že zatím co každá I-fuzzy relace ekvivalencí je i C-fuzzy relace ekvivalencí, existuje C-fuzzy relace ekvivalencí, která není I-fuzzy relace ekvivalencí a tedy tyto dva přístupy nejsou ekvivalentní.
    Trvalý link: http://hdl.handle.net/11104/0171023