Počet záznamů: 1

Numerical Approximation of a Nonlinear 3D Heat Radiation Problem

  1. 1.
    0321929 - MU-W 2009 RIV CN eng J - Článek v odborném periodiku
    Liu, L. - Huang, M. - Yuan, K. - Křížek, Michal
    Numerical Approximation of a Nonlinear 3D Heat Radiation Problem.
    [Numerická aproximace nelineárního 3d problému sálání.]
    Advances in Applied Mathematics and Mechanics. Roč. 1, č. 1 (2009), s. 125-139 ISSN 2070-0733
    Grant CEP: GA AV ČR(CZ) IAA100190803
    Výzkumný záměr: CEZ:AV0Z10190503
    Klíčová slova: heat radiation problem * Stefan-Boltzmann condition * Newton iterative method
    Kód oboru RIV: BA - Obecná matematika

    sup.In this paper, we are concerned with the numerical approximation of a steady-state heat radiation problem with a nonlinear Stefan-Boltzmann boundary condition in R3 . We first derive an equivalent minimization problem and then present a finite element analysis to the solution of such a minimization problem. Moreover, we apply the Newton iterative method for solving the nonlinear equation resulting from the minimization problem. A numerical example is given to illustrate theoretical results.

    V článku se zabýváme numerickou aproximací stacionární úlohy sálání tepla s nelineární Stefanovou-Boltzmannovou okrajovou podmínkou v R3 .
    Trvalý link: http://hdl.handle.net/11104/0170327
    Název souboruStaženoVelikostKomentářVerzePřístup
    Krizek6.pdf1288.1 KBVydavatelský postprintvyžádat