Počet záznamů: 1  

Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma

  1. 1.
    SYSNO ASEP0584064
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevApplication of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma
    Tvůrce(i) Ziaja, B. (DE)
    Bekx, J.J. (DE)
    Mašek, M. (CZ)
    Medvedev, Nikita (UFP-V) ORCID
    Lipp, V. (DE)
    Saxena, V. (IN)
    Stránský, M. (CZ)
    Celkový počet autorů7
    Číslo článku20220216
    Zdroj.dok.Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences - ISSN 1364-503X
    Roč. 381, č. 2253 (2023)
    Poč.str.13 s.
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovaBoltzmann kinetic equations ; plasma ; warm dense matter ; X-ray free-electron lasers
    Vědní obor RIVBL - Fyzika plazmatu a výboje v plynech
    Obor OECDFluids and plasma physics (including surface physics)
    Způsob publikováníOmezený přístup
    Institucionální podporaUFP-V - RVO:61389021
    UT WOS001021900200007
    EID SCOPUS85163686172
    DOI10.1098/rsta.2022.0216
    AnotaceIn this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
    PracovištěÚstav fyziky plazmatu
    KontaktVladimíra Kebza, kebza@ipp.cas.cz, Tel.: 266 052 975
    Rok sběru2024
    Elektronická adresahttps://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2022.0216
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.