Počet záznamů: 1  

Insights into surface chemistry down to nanoscale: An accessible colour hyperspectral imaging approach for scanning electron microscopy

  1. 1.
    SYSNO ASEP0575337
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevInsights into surface chemistry down to nanoscale: An accessible colour hyperspectral imaging approach for scanning electron microscopy
    Tvůrce(i) Nohl, J. F. (GB)
    Farr, N. T. H. (GB)
    Sun, Y. (GB)
    Hughes, G. M. (GB)
    Stehling, N. (GB)
    Zhang, J. (GB)
    Longman, F. (GB)
    Ives, G. (GB)
    Pokorná, Zuzana (UPT-D) RID, ORCID, SAI
    Mika, Filip (UPT-D) RID, SAI, ORCID
    Kumar, V. (GB)
    Mihaylova, L. (GB)
    Holland, C. (GB)
    Cussen, S. A. (GB)
    Rodenburg, C. (GB)
    Celkový počet autorů15
    Číslo článku100413
    Zdroj.dok.Materials Today Advances - ISSN 2590-0498
    Roč. 19, August (2023)
    Poč.str.12 s.
    Forma vydáníOnline - E
    Jazyk dok.eng - angličtina
    Země vyd.NL - Nizozemsko
    Klíč. slovachemical imaging ; secondary electron hyperspectral imaging ; scanning electron microscopy ; secondary electrons ; machine learning
    Vědní obor RIVJA - Elektronika a optoelektronika, elektrotechnika
    Obor OECDCoating and films
    Způsob publikováníOpen access
    Institucionální podporaUPT-D - RVO:68081731
    UT WOS001067131300001
    EID SCOPUS85169464761
    DOI10.1016/j.mtadv.2023.100413
    AnotaceChemical imaging (CI) is the spatial identification of molecular chemical composition and is critical to characterising the (in-) homogeneity of functional material surfaces. Nanoscale CI on bulk functional material surfaces is a longstanding challenge in materials science and is addressed here. We demonstrate the feasibility of surface sensitive CI in the scanning electron microscope (SEM) using colour enriched secondary electron hyperspectral imaging (CSEHI). CSEHI is a new concept in the SEM, where secondary electron emissions in up to three energy ranges are assigned to RGB (red, green, blue) image colour channels. The energy ranges are applied to a hyperspectral image volume which is collected in as little as 50 s. The energy ranges can be defined manually or automatically. Manual application requires additional information from the user as first explained and demonstrated for a lithium metal anode (LMA) material, followed by manual CSEHI for a range of materials from art history to zoology. We introduce automated CSEHI, eliminating the need for additional user information, by finding energy ranges using a non-negative matrix factorization (NNMF) based method. Automated CSEHI is evaluated threefold: (1) benchmarking to manual CSEHI on LMA, (2) tracking controlled changes to LMA surfaces, (3) comparing automated CSEHI and manual CI results published in the past to reveal nanostructures in peacock feather and spider silk. Based on the evaluation, CSEHI is well placed to differentiate/track several lithium compounds formed through a solution reaction mechanism on a LMA surface (eg. lithium carbonate, lithium hydroxide and lithium nitride). CSEHI was used to provide insights into the surface chemical distribution on the surface of samples from art history (mineral phases) to zoology (di-sulphide bridge localisation) that are hidden from existing surface analysis techniques. Hence, the CSEHI approach has the potential to impact the way materials are analysed for scientific and industrial purposes.
    PracovištěÚstav přístrojové techniky
    KontaktMartina Šillerová, sillerova@ISIBrno.Cz, Tel.: 541 514 178
    Rok sběru2024
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S2590049823000735
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.