Počet záznamů: 1  

Energy deposition and melt deformation on the ITER first wall due to disruptions and vertical displacement events

  1. 1.
    SYSNO ASEP0553538
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevEnergy deposition and melt deformation on the ITER first wall due to disruptions and vertical displacement events
    Tvůrce(i) Coburn, C. T. (US)
    Lehnen, M. (FR)
    Pitts, R. (FR)
    Simic, G. (FR)
    Artola, F. J. (FR)
    Thorén, E. (SE)
    Ratynskaia, S. (SE)
    Ibanoglu, C. (TR)
    Brank, M. (SI)
    Kos, L. (SI)
    Khayrutdinov, R. (RU)
    Lukash, V. (RU)
    Stein-Lubrano, B. (US)
    Matveeva, Ekaterina (UFP-V)
    Pautasso, G. (DE)
    Celkový počet autorů15
    Číslo článku016001
    Zdroj.dok.Nuclear Fusion. - : Institute of Physics Publishing - ISSN 0029-5515
    Roč. 62, č. 1 (2022)
    Poč.str.12 s.
    Jazyk dok.eng - angličtina
    Země vyd.AT - Rakousko
    Klíč. slovahalo currents ; plasma disruptions ; plasma facing components ; heat loads ; material erosion ; iter
    Vědní obor RIVBL - Fyzika plazmatu a výboje v plynech
    Obor OECDFluids and plasma physics (including surface physics)
    CEP8D15001 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    LM2018117 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Způsob publikováníOpen access
    Institucionální podporaUFP-V - RVO:61389021
    UT WOS000734359400001
    EID SCOPUS85122629060
    DOI10.1088/1741-4326/ac38c7
    AnotaceAn analysis workflow has been developed to assess energy deposition and material damage for ITER vertical displacement events (VDEs) and major disruptions (MD). This paper describes the use of this workflow to assess the melt damage to be expected during unmitigated current quench (CQ) phases of VDEs and MDs at different points in the ITER research plan. The plasma scenarios are modeled using the DINA code with variations in plasma current I (p), disruption direction (upwards or downwards), Be impurity density n (Be), and diffusion coefficient chi. Magnetic field line tracing using SMITER calculates time-dependent, 3D maps of surface power density q (perpendicular to) on the Be-armored first wall panels (FWPs) throughout the CQ. MEMOS-U determines the temperature response, macroscopic melt motion, and final surface topology of each FWP. Effects of Be vapor shielding are included. Scenarios at the baseline combination of I (p) and toroidal field (15 MA/5.3 T) show the most extreme melt damage, with the assumed n (Be) having a strong impact on the disruption duration, peak q (perpendicular to) and total energy deposition to the first wall. The worst-cases are upward 15 MA VDEs and MDs at lower values of n (Be), with q (perpendicular to,max) = 307 MW m(-2) and maximum erosion losses of similar to 2 mm after timespans of similar to 400-500 ms. All scenarios at 5 MA avoided melt damage, and only one 7.5 MA scenario yields a notable erosion depth of 0.25 mm. These results imply that disruptions during 5 MA, and some 7.5 MA, operating scenarios will be acceptable during the pre-fusion power operation phases of ITER. Preliminary analysis shows that localized melt damage for the worst-case disruption should have a limited impact on subsequent stationary power handling capability.
    PracovištěÚstav fyziky plazmatu
    KontaktVladimíra Kebza, kebza@ipp.cas.cz, Tel.: 266 052 975
    Rok sběru2023
    Elektronická adresahttps://iopscience.iop.org/article/10.1088/1741-4326/ac38c7
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.