Počet záznamů: 1  

Discrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation canopies

  1. 1.
    SYSNO ASEP0547503
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevDiscrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation canopies
    Tvůrce(i) Malenovský, Z. (CZ)
    Regaieg, O. (FR)
    Yin, T. (CN)
    Lauret, N. (FR)
    Guilleux, J. (FR)
    Chavanon, E. (FR)
    Duran, N. (FR)
    Janoutová, Růžena (UEK-B) RID, ORCID, SAI
    Delavois, A. (FR)
    Meynier, J. (FR)
    Medjdoub, G. (FR)
    Yang, P. (CN)
    Van der Tol, C. (NL)
    Morton, D. (US)
    Cook, B. D. (US)
    Gastellu-Etchegorry, J. P. (FR)
    Celkový počet autorů16
    Zdroj.dok.Remote Sensing of Environment. - : Elsevier - ISSN 0034-4257
    Roč. 263, SEP 15 (2021), s. 1-24
    Poč.str.24 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovasun-induced fluorescence ; monte-carlo ; reflectance ; photosynthesis ; scattering ; dart ; transmittance ; fluspect ; airborne ; traits ; dart ; Fluspect ; scope ; sif ; Sun-/shade-adapted leaves ; lai ; Clumping ; Wood
    Vědní obor RIVEH - Ekologie - společenstva
    Obor OECDEnvironmental sciences (social aspects to be 5.7)
    CEPLM2018123 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Výzkumná infrastrukturaCzeCOS III - 90123 - Ústav výzkumu globální změny AV ČR, v. v. i.
    Způsob publikováníOmezený přístup
    Institucionální podporaUEK-B - RVO:86652079
    UT WOS000702738400002
    EID SCOPUS85109576689
    DOI10.1016/j.rse.2021.112564
    AnotaceSolar-induced fluorescence (SIF) is a subtle but informative optical signal of vegetation photosynthesis. Remotely sensed SIF integrates environmental, physiological and structural changes that alter photosynthesis at leaf, plant and canopy scales. Radiative transfer models are ideally suited to investigate the complex sources of variability in the SIF signal to guide the interpretation of SIF retrievals from airborne and space-borne platforms. Here, we coupled the Fluspect-Cx model of leaf optical properties and chlorophyll-a fluorescence with the Discrete Anisotropic Radiative Transfer (DART) model to upscale SIF from individual leaves to three-dimensional (3D) structurally explicit canopies. For one-dimensional homogeneous (turbid-like) canopies, DART-SIF was nearly identical to SIF simulated in two existing models, SCOPE and mSCOPE (RMSE <0.221 W.m(-2).mu m(-1).sr(-1)). DART simulations in geometrically explicit 3D canopies offered four important insights regarding the influence of vegetation structure on the multiangular top-of-canopy SIF signal. First, changes in the 3D canopy architecture of maize crops, represented by leaf density (leaf area index), and plant clumping (canopy closure) had a larger impact on SIF than the modelled photosynthetic efficiency distinction between sun-adapted and shade-adapted foliage. Second, clumping of leaves at the crop and stand levels was identified as one of the key driving factors of multi-angular anisotropy of red and farred SIF (686 and 740 nm) for both maize and eucalyptus canopies. Third, non-photosynthetic woody material had a significant impact on top-of-canopy SIF in modelled 3D forest stands. Wood shadowing decreased the photosynthetically active radiation absorbed by green leaves, and consequently the SIF emissions, by 10% in sparse and 17% in dense eucalyptus stands. The wood obstruction (blocking) effect, quantified as a relative difference of SIF escape probabilities from canopies with and without wood in the nadir viewing direction, decreased far-red SIF by 4-6% but it had a smaller and sometimes positive influence (by less than 2%) on red SIF. Fourth, DART 3D radiative budget profiles revealed that the majority of the SIF signal from a dense eucalyptus stand originated from the top 25% of the simulated canopy. Interestingly, the introduction of bark-covered woody elements did not alter the simulated balance and omnidirectional escape factor of red SIF in this upper canopy part but did raise significantly both of them in case of far-red SIF. These results demonstrate the importance of 3D radiative transfer and radiative budget simulations for investigating SIF interactions in structurally complex plant canopies and for a better understanding of spatiotemporal and multi-angular remote sensing SIF observations.
    PracovištěÚstav výzkumu globální změny
    KontaktNikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268
    Rok sběru2022
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S0034425721002844?via%3Dihub
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.