Počet záznamů: 1  

A Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation

  1. 1.
    SYSNO ASEP0546901
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVZáznam nebyl označen do RIV
    Poddruh JČlánek ve WOS
    NázevA Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation
    Tvůrce(i) Gast, R. (DE)
    Schmidt, Helmut (UIVT-O) ORCID, RID, SAI
    Knösche, T.R. (DE)
    Celkový počet autorů3
    Zdroj.dok.Neural Computation - ISSN 0899-7667
    Roč. 32, č. 9 (2020), s. 1615-1634
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovasynapses ; model ; excitability ; bifurcation ; depression ; plasticity ; modulation ; mechanisms ; patterns ; impact
    UT WOS000558263900001
    EID SCOPUS85089406887
    DOI10.1162/neco_a_01300
    AnotaceBursting plays an important role in neural communication. At the population level, macroscopic bursting has been identified in populations of neurons that do not express intrinsic bursting mechanisms. For the analysis of phase transitions between bursting and non-bursting states, mean-field descriptions of macroscopic bursting behavior are a valuable tool. In this article, we derive mean-field descriptions of populations of spiking neurons and examine whether states of collective bursting behavior can arise from short-term adaptation mechanisms. Specifically, we consider synaptic depression and spike-frequency adaptation in networks of quadratic integrate-and-fire neurons. Analyzing the mean-field model via bifurcation analysis, we find that bursting behavior emerges for both types of short-term adaptation. This bursting behavior can coexist with steady-state behavior, providing a bistable regime that allows for transient switches between synchronized and nonsynchronized states of population dynamics. For all of these findings, we demonstrate a close correspondence between the spiking neural network and the mean-field model. Although the mean-field model has been derived under the assumptions of an infinite population size and all-to-all coupling inside the population, we show that this correspondence holds even for small, sparsely coupled networks. In summary, we provide mechanistic descriptions of phase transitions between bursting and steady-state population dynamics, which play important roles in both healthy neural communication and neurological disorders.
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2022
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.