Počet záznamů: 1  

Derived, coderived, and contraderived categories of locally presentable abelian categories

  1. 1.
    SYSNO ASEP0545361
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevDerived, coderived, and contraderived categories of locally presentable abelian categories
    Tvůrce(i) Positselski, Leonid (MU-W) SAI, ORCID, RID
    Šťovíček, J. (CZ)
    Číslo článku106883
    Zdroj.dok.Journal of Pure and Applied Algebra. - : Elsevier - ISSN 0022-4049
    Roč. 226, č. 4 (2022)
    Poč.str.39 s.
    Jazyk dok.eng - angličtina
    Země vyd.NL - Nizozemsko
    Klíč. slovaconventional and exotic derived categories ; complete cotorsion pairs ; abelian model structures
    Vědní obor RIVBA - Obecná matematika
    Obor OECDPure mathematics
    CEPGA20-13778S GA ČR - Grantová agentura ČR
    Způsob publikováníOmezený přístup
    Institucionální podporaMU-W - RVO:67985840
    UT WOS000703984500021
    EID SCOPUS85114424531
    DOI10.1016/j.jpaa.2021.106883
    AnotaceFor a locally presentable abelian category B with a projective generator, we construct the projective derived and contraderived model structures on the category of complexes, proving in particular the existence of enough homotopy projective complexes of projective objects. We also show that the derived category D(B) is generated, as a triangulated category with coproducts, by the projective generator of B. For a Grothendieck abelian category A, we construct the injective derived and coderived model structures on complexes. Assuming Vopěnka’s principle, we prove that the derived category D(A) is generated, as a triangulated category with products, by the injective cogenerator of A. We also define the notion of an exact category with an object size function and prove that the derived category of any such exact category with exact κ-directed colimits of chains of admissible monomorphisms has Hom sets. Hence the derived category of any locally presentable abelian category has Hom sets.
    PracovištěMatematický ústav
    KontaktJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Rok sběru2023
    Elektronická adresahttps://doi.org/10.1016/j.jpaa.2021.106883
Počet záznamů: 1