Počet záznamů: 1  

Low-temperature-meltable elastomers based on linear polydimethylsiloxane chains alpha, omega-terminated with mesogenic groups as physical crosslinker: a passive smart material with potential as viscoelastic coupling. Part II-viscoelastic and rheological properties

  1. 1.
    SYSNO ASEP0535690
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevLow-temperature-meltable elastomers based on linear polydimethylsiloxane chains alpha, omega-terminated with mesogenic groups as physical crosslinker: a passive smart material with potential as viscoelastic coupling. Part II-viscoelastic and rheological properties
    Tvůrce(i) Horodecka, Sabina (UMCH-V) RID, ORCID
    Strachota, Adam (UMCH-V) RID, ORCID
    Mossety-Leszczak, B. (PL)
    Kisiel, M. (PL)
    Strachota, Beata (UMCH-V) RID
    Šlouf, Miroslav (UMCH-V) RID, ORCID
    Číslo článku2840
    Zdroj.dok.Polymers. - : MDPI
    Roč. 12, č. 12 (2020), s. 1-31
    Poč.str.31 s.
    Jazyk dok.eng - angličtina
    Země vyd.CH - Švýcarsko
    Klíč. slovareversible networks ; self-assembly ; self-healing
    Vědní obor RIVCD - Makromolekulární chemie
    Obor OECDPolymer science
    CEPGA19-04925S GA ČR - Grantová agentura ČR
    Způsob publikováníOpen access
    Institucionální podporaUMCH-V - RVO:61389013
    UT WOS000602471700001
    EID SCOPUS85094108439
    DOI10.3390/polym12122840
    AnotaceRheological and viscoelastic properties of physically crosslinked low-temperature elastomers were studied. The supramolecularly assembling copolymers consist of linear polydimethylsiloxane (PDMS) elastic chains terminated on both ends with mesogenic building blocks (LC) of azobenzene type. They are generally and also structurally highly different from the well-studied LC polymer networks or LC elastomers: The LC units make up only a small volume fraction in our materials and act as fairly efficient physical crosslinkers with thermotropic properties. The aggregation (nano-phase separation) of the relatively rare, small and spatially separated terminal LC units generates temperature-switched viscoelasticity in the molten copolymers. Their rheological behavior was found to be controlled by an interplay of nano-phase separation of the LC units (growth and splitting of their aggregates) and of the thermotropic transitions in these aggregates (which change their stiffness). As a consequence, multiple gel points (up to three) are observed in temperature scans of the copolymers. The physical crosslinks also can be reversibly disconnected by large mechanical strain in the ‘warm’ rubbery state, as well as in melt (thixotropy). The kinetics of crosslink formation was found to be fast if induced by temperature and extremely fast in case of internal self-healing after strain damage. Thixotropic loop tests hence display only very small hysteresis in the LC-melt-state, although the melts show very distinct shear thinning. Our study evaluates structure-property relationships in three homologous systems with elastic PDMS segments of different length (8.6, 16.3 and 64.4 repeat units). The studied copolymers might be of interest as passive smart materials, especially as temperature-controlled elastic/viscoelastic mechanical coupling.
    PracovištěÚstav makromolekulární chemie
    KontaktEva Čechová, cechova@imc.cas.cz ; Tel.: 296 809 358
    Rok sběru2021
    Elektronická adresahttps://www.mdpi.com/2073-4360/12/12/2840
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.