Počet záznamů: 1  

Higher gradient expansion for linear isotropic peridynamic materials

  1. 1.
    SYSNO ASEP0475571
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevHigher gradient expansion for linear isotropic peridynamic materials
    Tvůrce(i) Šilhavý, Miroslav (MU-W) RID, SAI, ORCID
    Zdroj.dok.Mathematics and Mechanics of Solids - ISSN 1081-2865
    Roč. 22, č. 6 (2017), s. 1483-1493
    Poč.str.11 s.
    Jazyk dok.eng - angličtina
    Země vyd.DE - Německo
    Klíč. slovaperidynamics ; higher-grade theories ; non-local elastic-material model ; representation theorems for isotropic functions
    Vědní obor RIVBA - Obecná matematika
    Obor OECDApplied mathematics
    Institucionální podporaMU-W - RVO:67985840
    UT WOS000402887700015
    EID SCOPUS85020387341
    DOI10.1177/1081286516637235
    AnotacePeridynamics is a non-local continuum mechanics that replaces the differential operator embodied by the stress term div S in Cauchy's equation of motion by a non-local force functional L to take into account long-range forces. The resulting equation of motion reads If the characteristic length delta of the interparticle interaction approaches 0, the operator L admits an expansion in delta i that, for a linear isotropic material, reads Where lambda and mu are the LamE moduli of the classical elasticity, and the remaining higher-order corrections contain products of the type T(s)u := Theta(s) . del(2s)u of even-order gradients del(2s)u (i. e., the collections of all partial derivatives of u of order 2s) and constant coefficients Theta(s) collectively forming a tensor of order 2s. Symmetry arguments show that the terms T(s)u have the form where lambda(s) and mu(s) are scalar constants.
    PracovištěMatematický ústav
    KontaktJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Rok sběru2018