Počet záznamů: 1  

Redox regulation of ATP sulfurylase in microalgae

  1. 1.
    SYSNO ASEP0468470
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevRedox regulation of ATP sulfurylase in microalgae
    Tvůrce(i) Prioretti, L. (IT)
    Lebrun, R. (FR)
    Gontero, B. (FR)
    Giordano, Mario (MBU-M) ORCID
    Zdroj.dok.Biochemical and Biophysical Research Communications. - : Elsevier - ISSN 0006-291X
    Roč. 478, č. 4 (2016), s. 1555-1562
    Poč.str.9 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaATP sulfurylase ; cysteine ; Sulfur metabolism
    Vědní obor RIVEE - Mikrobiologie, virologie
    Institucionální podporaMBU-M - RVO:61388971
    UT WOS000384390200011
    EID SCOPUS84992107986
    DOI10.1016/j.bbrc.2016.08.151
    AnotaceATP sulfurylase (ATPS) catalyzes the first step of sulfur assimilation in photosynthetic organisms. An ATPS type A is mostly present in freshwater cyanobacteria, with four conserved cysteine residues. Oceanic cyanobacteria and most eukaryotic algae instead, possess an ATPS-B containing seven to ten cysteines; five of them are conserved, but only one in the same position as ATPS-A. We investigated the role of cysteines on the regulation of the different algal enzymes. We found that the activity of ATPS-B from four different microorganisms was enhanced when reduced and decreased when oxidized. The LC-MS/MS analysis of the ATPS-B from the marine diatom Thalassiosira pseudonana showed that the residue Cys-247 was presumably involved in the redox regulation. The absence of this residue in the ATPS-A of the freshwater cyanobacterium Synechocystis sp. instead, was consistent with its lack of regulation. Some other conserved cysteine residues in the ATPS from T. pseduonana and not in Synechocystis sp. were accessible to redox agents and possibly play a role in the enzyme regulation. Furthermore, the fact that oceanic cyanobacteria have ATPS-B structurally and functionally closer to that from most of eukaryotic algae than to the ATPS-A from other cyanobacteria suggests that life in the sea or freshwater may have driven the evolution of ATPS. (
    PracovištěMikrobiologický ústav
    KontaktEliška Spurná, eliska.spurna@biomed.cas.cz, Tel.: 241 062 231
    Rok sběru2017
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.