Počet záznamů: 1  

Numerical modeling of aluminium foam on two scales

  1. 1.
    SYSNO ASEP0451804
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevNumerical modeling of aluminium foam on two scales
    Tvůrce(i) Němeček, J. (CZ)
    Denk, F. (CZ)
    Zlámal, Petr (UTAM-F) RID, SAI, ORCID
    Celkový počet autorů3
    Zdroj.dok.Applied Mathematics and Computation. - : Elsevier - ISSN 0096-3003
    Roč. 267, September (2015), s. 506-516
    Poč.str.11 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaclosed-cell aluminium foam ; Alporas ; multiscale modeling ; homogenization ; FFT ; finite element modeling
    Vědní obor RIVJI - Kompozitní materiály
    CEPGAP105/12/0824 GA ČR - Grantová agentura ČR
    Institucionální podporaUTAM-F - RVO:68378297
    UT WOS000361571100042
    EID SCOPUS84942988834
    DOI10.1016/j.amc.2015.01.084
    AnotaceThe paper deals with computational modeling of aluminium foams on two distinct scales. The microscopically heterogeneous cell walls are modeled with continuum micromechanics models. Several analytical schemes and FFT-based homogenization are applied to predict elastic properties at the first level. Nanoindentation with sharp Berkovich tip is utilized to obtain input parameters for the homogenizations. Plastic properties are assessed directly from spherical nanoindentation at this level. Several geometrical simplifications are studied to model the upper foam level. At first, two dimensional models based on beam analogy and plane strain finite element (FE) models are studied for their ability to predict effective elastic and plastic foam properties. Finally, the behavior of the three dimensional voxel based FE model derived from micro-CT imaging is investigated. Models are compared in terms of their ability to predict experimental results and in terms of their computational demands. It is shown in the paper each model type has difficulties to quantitatively match experimental data in the whole tested range. Two dimensional beam models are capable to predict elastic properties but fail to predict plastic ones. Plane strain FE models are very compliant and lack three dimensional confinement. Three dimensional voxel model has the largest potential to predict experimental measurements but it is the most computationally demanding. It was found the performance of all models on the foam level is very much dependent on their porosity which is the main controlling parameter of the model behavior. Any deviations from experimentally assessed porosity leads to large deviations in the model prediction. Mutual model comparisons and possible solutions are provided in the paper along with computational aspects and requirements.
    PracovištěÚstav teoretické a aplikované mechaniky
    KontaktKulawiecová Kateřina, kulawiecova@itam.cas.cz, Tel.: 225 443 285
    Rok sběru2016
    Elektronická adresahttp://www.sciencedirect.com/science/article/pii/S0096300315001162
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.