Počet záznamů: 1  

Structure of cellulose microfibrils in primary cell walls from Collenchyma

  1. 1.
    SYSNO ASEP0388154
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevStructure of cellulose microfibrils in primary cell walls from Collenchyma
    Tvůrce(i) Thomas, L. H. (GB)
    Forsyth, V. T. (FR)
    Šturcová, Adriana (UMCH-V) RID
    Kennedy, C. J. (GB)
    May, R. P. (FR)
    Altaner, C. M. (NZ)
    Apperley, D. C. (GB)
    Wess, T. J. (GB)
    Jarvis, M. C. (GB)
    Zdroj.dok.Plant Physiology. - : Oxford University Press - ISSN 0032-0889
    Roč. 161, č. 1 (2013), s. 465-476
    Poč.str.12 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaprimary cell wall ; cellulose microfibril structure ; chain packing disorder
    Vědní obor RIVCD - Makromolekulární chemie
    CEPGAP108/12/0703 GA ČR - Grantová agentura ČR
    Institucionální podporaUMCH-V - RVO:61389013
    UT WOS000312964000037
    DOI10.1104/pp.112.206359
    AnotaceIn the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production.
    PracovištěÚstav makromolekulární chemie
    KontaktEva Čechová, cechova@imc.cas.cz ; Tel.: 296 809 358
    Rok sběru2013
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.