Počet záznamů: 1
Drought shifts ozone deposition pathways in spruce forest from stomatal to non-stomatal flux
- 1.
SYSNO ASEP 0619039 Druh ASEP J - Článek v odborném periodiku Zařazení RIV J - Článek v odborném periodiku Poddruh J Článek ve SCOPUS Název Drought shifts ozone deposition pathways in spruce forest from stomatal to non-stomatal flux Tvůrce(i) Juráň, Stanislav (UEK-B) RID, SAI
Karl, T. (AT)
Ofori-Amanfo, Kojo Kwakye (UEK-B) SAI, ORCID, RID
Šigut, Ladislav (UEK-B) RID, ORCID, SAI
Zavadilová, Ina (UEK-B) RID, SAI, ORCID
Grace, John (UEK-B) SAI, RID
Urban, Otmar (UEK-B) RID, ORCID, SAICelkový počet autorů 0 Číslo článku 126081 Zdroj.dok. Environmental Pollution. - : Elsevier - ISSN 0269-7491
Roč. 372, MAY (2025)Poč.str. 10 s. Jazyk dok. eng - angličtina Země vyd. NL - Nizozemsko Klíč. slova Eddy covariance ; megan ; Ozone flux ; Picea abies ; Stomatal conductance ; Volatile organic compounds Vědní obor RIV EH - Ekologie - společenstva Obor OECD Environmental sciences (social aspects to be 5.7) CEP LM2023048 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy EH22_008/0004635 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy Způsob publikování Open access Institucionální podpora UEK-B - RVO:86652079 EID SCOPUS 105000240820 DOI https://doi.org/10.1016/j.envpol.2025.126081 Anotace Dry deposition is the primary pathway for tropospheric ozone (O3) removal, with forests playing a critical role. However, environmental stressors such as drought can reduce this removal capacity by limiting stomatal O3 uptake due to stomata closure. Here we test the hypothesis that combined soil and atmospheric drought reduces the O3 sink capacity of forest ecosystems by diminishing stomatal O3 flux. For stomatal O3 flux estimation, we applied a single-layer resistance model, which estimates stomatal O3 flux based on evaporative resistance method complemented by aerodynamic and laminar sublayer resistances calculation. The model was complemented by detailed sap flow monitoring within the forest footprint, to calculate stomatal O3 flux, using long-term eddy covariance measurements of total water vapour and O3 fluxes over four growing seasons (2017–2020), including an unprecedented drought period. The results revealed that non-stomatal O3 flux compensated for the reduction in stomatal flux in a temperate Norway spruce forest at the Bílý Kříž experimental site in the mountainous region of the Czech Republic, Central Europe. Ozone consumption through interactions with volatile organic compounds, quantified by the MEGAN (Model of Emissions of Gases and Aerosols from Nature) model, contributed only marginally to the non-stomatal flux. These findings suggest that surface reactions, where O3 interacts with plant surfaces, cuticular layers, and soil particles, likely constitute a dominant non-stomatal O3 sink during drought. To our knowledge, this is the first report of severe drought influencing O3 fluxes in temperate mountainous regions, which were previously considered less affected by drought stress. Pracoviště Ústav výzkumu globální změny Kontakt Nikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268 Rok sběru 2026 Elektronická adresa https://www.sciencedirect.com/science/article/pii/S0269749125004543?via%3Dihub
Počet záznamů: 1