Počet záznamů: 1
Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation
- 1.0603460 - ÚOCHB 2026 RIV US eng J - Článek v odborném periodiku
Kolouchová, K. - Thijssen, Q. - Groborz, Ondřej - Van Damme, L. - Humajová, J. - Matouš, P. - Quaak, A. - Duša, M. - Kučka, Jan - Šefc, L. - Hrubý, Martin - Van Vlierberghe, S.
Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation.
Advanced Healthcare Materials. Roč. 14, č. 1 (2025), č. článku 2402256. ISSN 2192-2640. E-ISSN 2192-2659
Grant CEP: GA MŠMT(CZ) LM2023053; GA MŠMT(CZ) EH22_008/0004607
Výzkumná infrastruktura: Czech-BioImaging III - 90250
Institucionální podpora: RVO:61388963 ; RVO:61389013
Klíčová slova: computed tomography contrast agent * implant * light-based 3D printing * light-based crosslinking * photo-crosslinkable polymers * polyester * thiol-ene step growth polymerization
Obor OECD: Polymer science; Polymer science (UMCH-V)
Impakt faktor: 9.6, rok: 2024 ; AIS: 1.852, rok: 2024
Způsob publikování: Open access
Web výsledku:
https://doi.org/10.1002/adhm.202402256DOI: https://doi.org/10.1002/adhm.202402256
Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.
Trvalý link: https://hdl.handle.net/11104/0360780
Počet záznamů: 1
