Počet záznamů: 1
All nonexpanding gravitational waves in D-dimensional (anti-)de Sitter space
- 1.
SYSNO ASEP 0602869 Druh ASEP J - Článek v odborném periodiku Zařazení RIV J - Článek v odborném periodiku Poddruh J Článek ve WOS Název All nonexpanding gravitational waves in D-dimensional (anti-)de Sitter space Tvůrce(i) Ortaggio, Marcello (MU-W) RID, SAI, ORCID
Voldřich, J. (CZ)
Barrientos, José (MU-W) SAI, ORCID, RIDČíslo článku 124032 Zdroj.dok. Physical Review D. - : American Physical Society - ISSN 2470-0010
Roč. 110, č. 12 (2024)Poč.str. 17 s. Forma vydání Tištěná - P Jazyk dok. eng - angličtina Země vyd. US - Spojené státy americké Klíč. slova general relativity ; Kundt spacetime ; Siklos waves Vědní obor RIV BA - Obecná matematika Obor OECD Particles and field physics Způsob publikování Omezený přístup Institucionální podpora MU-W - RVO:67985840 UT WOS 001378683600009 EID SCOPUS 85212558335 DOI https://doi.org/10.1103/PhysRevD.110.124032 Anotace We present a complete, theory-independent classification of 𝐷-dimensional Kundt spacetimes of Weyl and traceless-Ricci type N. We show that these geometries consist of three invariantly defined subfamilies, namely (generalized) Kundt, pp-, and Siklos waves, for each of which we obtain a convenient canonical form. As a byproduct, this also demonstrates that such metrics coincide with the class of nonexpanding (A)dS-Kerr-Schild spacetimes. The role of these spacetimes in Einstein’s gravity (including minimally coupled 𝑝-forms and nonlinear electrodynamics) as nonexpanding gravitational waves in an (anti)-de Sitter background is discussed. Furthermore, applications to extended theories such as Gauss-Bonnet, Lovelock, quadratic, and 𝑓(𝑅) gravity are also briefly illustrated, as well as the overlap of the obtained metrics with universal and almost-universal spacetimes. In the appendixes we additionally settle the issue of the redundancy of certain field equations for all Kundt spacetimes in a theory-independent way and present various alternative coordinates for the spacetimes studied in the paper. Pracoviště Matematický ústav Kontakt Jarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757 Rok sběru 2025 Elektronická adresa https://doi.org/10.1103/PhysRevD.110.124032
Počet záznamů: 1