- Predicting GPP in Carpathian Beech Forests: Uncovering spatial and te…
Počet záznamů: 1  

Predicting GPP in Carpathian Beech Forests: Uncovering spatial and temporal patterns using a regression model with climatic, topographic and additional features

  1. 1.
    SYSNO ASEP0601463
    Document TypeC - Proceedings Paper (int. conf.)
    R&D Document TypeConference Paper
    TitlePredicting GPP in Carpathian Beech Forests: Uncovering spatial and temporal patterns using a regression model with climatic, topographic and additional features
    Author(s) Missarov, A. (CZ)
    Kašpar, J. (CZ)
    Král, K. (CZ)
    Brovkina, Olga (UEK-B) RID, SAI, ORCID
    Švik, Marian (UEK-B) SAI, RID, ORCID
    Source TitlePredicting future trends – responses of beech and fir in the Carpathian region. - Lublaň : Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2024 / Čater Matjaž ; Dařenová Eva - ISBN 978-961-6993-87-6
    Pagess. 67-71
    Number of pages76 s.
    Publication formPrint - P
    ActionPredicting future trends – responses of beech and fir in the Carpathian region
    Event date05.09.2024 - 05.09.2024
    VEvent locationLjublaň
    CountrySI - Slovenia
    Event typeEUR
    Languageeng - English
    CountrySI - Slovenia
    Keywordsgross primary product ; remote sensing ; regression model ; temperature ; precipitation ; digital elevation model
    Subject RIVGK - Forestry
    OECD categoryForestry
    R&D ProjectsGF21-47163L GA ČR - Czech Science Foundation (CSF)
    Institutional supportUEK-B - RVO:86652079
    DOI https://doi.org/10.20315/SilvaSlovenica.0026.12
    AnnotationClimate change impact ecosystems globally, including the mixed forests of the Carpathian Mountains (Kruhlov et al. 2017). The primary manifestations of climate change are shifts in temperature and precipitation regimes, which undoubtedly affect biomass growth in complex ways. Since direct observations of the future are impossible, we rely on various modeling methods. Machine learning is the most popular contemporary approach for addressing such tasks. The aim of our study is to develop a regression model that predicts the behavior of Gross Primary Product (GPP) based on a range of climatic, topographic, and other variables. We use this model to forecast the growth of beech forests over the next 20 years under different climate scenarios.
    WorkplaceGlobal Change Research Institute
    ContactNikola Šviková, svikova.n@czechglobe.cz, Tel.: 511 192 268
    Year of Publishing2025
Počet záznamů: 1  

Metadata v repozitáři ASEP jsou licencována pod licencí CC0.

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.