Počet záznamů: 1
DMRG-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the NUHFI and NUFsub3/sub Molecules
- 1.0599916 - ÚFCH JH 2025 RIV US eng J - Článek v odborném periodiku
Višňák, Jakub - Brandejs, Jan - Maté, M. - Visscher, L. - Legeza, Ö. - Pittner, Jiří
DMRG-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the NUHFI and NUFsub3/sub Molecules.
Journal of Chemical Theory and Computation. Roč. 20, č. 20 (2024), s. 8862-8875. ISSN 1549-9618. E-ISSN 1549-9626
Grant CEP: GA ČR(CZ) GA18-24563S; GA MŠMT EH22_008/0004558
Výzkumná infrastruktura: e-INFRA CZ II - 90254
Institucionální podpora: RVO:61388955
Klíčová slova: matrix renormalization-group * electron correlation * quantum-chemistry * state * single * symmetry * models
Obor OECD: Physical chemistry
Impakt faktor: 5.7, rok: 2023 ; AIS: 1.419, rok: 2023
Způsob publikování: Open access
DOI: https://doi.org/10.1021/acs.jctc.4c00641
Heavy atom compounds represent a challenge for computational chemistry due to the need for simultaneous treatment of relativistic and correlation effects. Often such systems also exhibit strong correlation, which hampers the application of perturbation theory or single-reference coupled cluster (CC) methods. As a viable alternative, we have proposed externally correcting the CC method using the density matrix renormalization group (DMRG) wave functions, yielding the DMRG-tailored CC method. In a previous paper [J. Chem. Phys. 2020, 152, 174107], we reported a first implementation of this method in the relativistic context, which was restricted to molecules with real double group symmetry. In this work, we present a fully general implementation of the method, covering complex and quaternion double groups as well. The 4c-TCC method thus becomes applicable to polyatomic molecules, including heavy atoms. For the assessment of the method, we performed calculations of the chiral uranium compound NUHFI, which was previously studied in the context of the enhancement of parity violation effects. In particular, we performed calculations of a cut of the potential energy surface of this molecule along the stretching of the N-U bond, where the system exhibits strong multireference character. Since there are no experimental data for NUHFI, we have performed also an analogous study of the (more symmetric) NUF3 molecule, where the vibrational frequency of the N-U bond can be compared with spectroscopic data.
Trvalý link: https://hdl.handle.net/11104/0357327
Název souboru Staženo Velikost Komentář Verze Přístup 0599916.pdf 1 2.8 MB open access Vydavatelský postprint povolen
Počet záznamů: 1