Počet záznamů: 1
Thermal stability of electron beam welded AlCoCrFeNi2.1 alloy
- 1.
SYSNO ASEP 0599449 Druh ASEP J - Článek v odborném periodiku Zařazení RIV J - Článek v odborném periodiku Poddruh J Článek ve WOS Název Thermal stability of electron beam welded AlCoCrFeNi2.1 alloy Tvůrce(i) Rončák, Ján (UPT-D) ORCID, RID, SAI
Jozefovič, Patrik (UPT-D) ORCID, RID, SAI
Müller, P. (CZ)
Adam, O. (CZ)
Judas, J. (CZ)
Dupák, Libor (UPT-D) ORCID, RID, SAI
Zavdoveev, A. (UA)
Jan, V. (CZ)
Zobač, Martin (UPT-D) ORCID, RID, SAICelkový počet autorů 9 Číslo článku 096527 Zdroj.dok. Materials Research Express. - : Institute of Physics Publishing - ISSN 2053-1591
Roč. 11, č. 9 (2024)Poč.str. 12 s. Forma vydání Online - E Jazyk dok. eng - angličtina Země vyd. GB - Velká Británie Klíč. slova AlCoCrFeNi2.1 ; electron beam welding ; eutectic high-entropy alloys ; thermal stability Vědní obor RIV JP - Průmyslové procesy a zpracování Obor OECD Materials engineering Způsob publikování Open access Institucionální podpora UPT-D - RVO:68081731 UT WOS 001325280800001 EID SCOPUS 85205911259 DOI https://doi.org/10.1088/2053-1591/ad7ccc Anotace AlCoCrFeNi2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 degrees C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions. Pracoviště Ústav přístrojové techniky Kontakt Martina Šillerová, sillerova@ISIBrno.Cz, Tel.: 541 514 178 Rok sběru 2025 Elektronická adresa https://iopscience.iop.org/article/10.1088/2053-1591/ad7ccc
Počet záznamů: 1