Počet záznamů: 1  

Positivity and convexity in incomplete cooperative games

  1. 1.
    SYSNO ASEP0587911
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevPositivity and convexity in incomplete cooperative games
    Tvůrce(i) Černý, M. (CZ)
    Bok, J. (CZ)
    Hartman, David (UIVT-O) RID, SAI, ORCID
    Hladík, M. (CZ)
    Zdroj.dok.Annals of Operations Research. - : Springer - ISSN 0254-5330
    Roč. 340, 2-3 (2024), s. 785-809
    Poč.str.25 s.
    Forma vydáníOnline - E
    Jazyk dok.eng - angličtina
    Země vyd.DE - Německo
    Klíč. slovaCooperative games ; Incomplete games ; Upper game ; Lower game ; Positive games ; Convex games ; Totally monotonic games
    Obor OECDPure mathematics
    Způsob publikováníOpen access
    Institucionální podporaUIVT-O - RVO:67985807
    UT WOS001270194400002
    EID SCOPUS85198393891
    DOI https://doi.org/10.1007/s10479-024-06082-6
    AnotaceIncomplete cooperative games generalize the classical model of cooperative games by omitting the values of some of the coalitions. This allows for incorporating uncertainty into the model and studying the underlying games and possible payoff distributions based only on the partial information. In this paper, we conduct a systematic investigation of incomplete games, focusing on two important classes: positive and convex games. Regarding positivity, we generalize previous results from a special class of minimal incomplete games to a general setting. We characterize the non-extendability to a positive game by the existence of a certificate and provide a description of the set of positive extensions using its extreme games. These results also enable the construction of explicit formulas for several classes of incomplete games with special structures. The second part deals with convexity. We begin with the case of non-negative, minimal incomplete games. We establish the connection between incomplete games and the problem of completing partial functions and, consequently, provide a characterization of extendability and a full description of the set of symmetric convex extensions. This set serves as an approximation of the set of convex extensions.
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2025
    Elektronická adresahttps://doi.org/10.1007/s10479-024-06082-6
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.