Počet záznamů: 1  

FUME 2.0 – Flexible Universal processor for Modeling Emissions

  1. 1.
    0585895 - ÚI 2025 RIV DE eng J - Článek v odborném periodiku
    Belda, M. - Benešová, N. - Resler, Jaroslav - Huszár, P. - Vlček, O. - Krč, Pavel - Karlický, J. - Juruš, Pavel - Eben, Kryštof
    FUME 2.0 – Flexible Universal processor for Modeling Emissions.
    Geoscientific Model Development. Roč. 17, č. 9 (2024), s. 3867-3878. ISSN 1991-959X. E-ISSN 1991-9603
    Grant CEP: GA TA ČR(CZ) TO01000219; GA TA ČR(CZ) SS02030031
    Grant ostatní: TA ČR(CZ) TA04020797
    Institucionální podpora: RVO:67985807
    Klíčová slova: Air quality modelling * Emission modelling * SMOKE * emission inventories * CTM
    Obor OECD: Meteorology and atmospheric sciences
    Impakt faktor: 4, rok: 2023 ; AIS: 2.327, rok: 2023
    Způsob publikování: Open access
    Web výsledku:
    https://doi.org/10.5194/gmd-17-3867-2024DOI: https://doi.org/10.5194/gmd-17-3867-2024

    This paper introduces FUME 2.0, an open-source emission processor for air quality modeling, and documents the software structure, capabilities, and sample usage. FUME provides a customizable framework for emission preparation tailored to user needs. It is designed to work with heterogeneous emission inventory data, unify them into a common structure, and generate model-ready emissions for various chemical transport models (CTMs). Key features include flexibility in input data formats, support for spatial and temporal disaggregation, chemical speciation, and integration of external models like MEGAN. FUME employs a modular Python interface and PostgreSQL/PostGIS backend for efficient data handling. The workflow comprises data import, geographical transformation, chemical and temporal disaggregation, and output generation steps. Outputs for mesoscale CTMs CMAQ, CAMx, and WRF-Chem and the large-eddy-simulation model PALM are implemented along with a generic NetCDF format. Benchmark runs are discussed on a typical configuration with cascading domains, with import and preprocessing times scaling near-linearly with grid size. FUME facilitates air quality modeling from continental to regional and urban scales by enabling effective processing of diverse inventory datasets.
    Trvalý link: https://hdl.handle.net/11104/0353539


    Vědecká data: Supplement at Publisher´s website
     
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0585895-aoa.pdf14.6 MBOA CC BY 4.0Vydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.