- Causality in extremes of time series
Počet záznamů: 1  

Causality in extremes of time series

  1. 1.
    0578518 - ÚI 2025 RIV DE eng J - Článek v odborném periodiku
    Bodik, Juraj - Paluš, Milan - Pawlas, Z.
    Causality in extremes of time series.
    Extremes. Roč. 27, č. 1 (2024), s. 67-121. ISSN 1386-1999. E-ISSN 1572-915X
    Grant CEP: GA ČR(CZ) GA19-16066S
    Grant ostatní: AV ČR(CZ) AP1901
    Program: Akademická prémie - Praemium Academiae
    Institucionální podpora: RVO:67985807
    Klíčová slova: Granger causality * Causal inference * Nonlinear time series * Causality-in-tail * Extreme value theory * Heavy tails
    Obor OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Impakt faktor: 1.1, rok: 2023 ; AIS: 0.575, rok: 2023
    Způsob publikování: Open access
    Web výsledku:
    https://doi.org/10.1007/s10687-023-00479-5DOI: https://doi.org/10.1007/s10687-023-00479-5

    Consider two stationary time series with heavy-tailed marginal distributions. We aim to detect whether they have a causal relation, that is, if a change in one causes a change in the other. Usual methods for causal discovery are not well suited if the causal mechanisms only appear during extreme events. We propose a framework to detect a causal structure from the extremes of time series, providing a new tool to extract causal information from extreme events. We introduce the causal tail coefficient for time series, which can identify asymmetrical causal relations between extreme events under certain assumptions. This method can handle nonlinear relations and latent variables. Moreover, we mention how our method can help estimate a typical time difference between extreme events. Our methodology is especially well suited for large sample sizes, and we show the performance on the simulations. Finally, we apply our method to real-world space-weather and hydro-meteorological datasets.
    Trvalý link: https://hdl.handle.net/11104/0347507
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0578518-onloa.pdf39.2 MBOA CC BY 4.0Vydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.