- Item Difficulty Prediction Using Item Text Features: Comparison of Pr…
Počet záznamů: 1  

Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms

  1. 1.
    SYSNO ASEP0577144
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleItem Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
    Author(s) Štěpánek, Lubomír (UIVT-O)
    Dlouhá, Jana (UIVT-O)
    Martinková, Patrícia (UIVT-O) SAI, RID, ORCID
    Article number4104
    Source TitleMathematics. - : MDPI - ISSN 2227-7390
    Roč. 11, č. 19 (2023)
    Number of pages30 s.
    Publication formOnline - E
    Languageeng - English
    CountryCH - Switzerland
    Keywordstext-based item difficulty prediction ; text features and item wording ; machine learning ; regularization methods ; elastic net regression ; support vector machines ; regression and decision trees ; random forests ; neural networks ; algorithm vs. domain expert’s prediction performance
    OECD categoryComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    R&D ProjectsGA21-03658S GA ČR - Czech Science Foundation (CSF)
    Method of publishingOpen access
    Institutional supportUIVT-O - RVO:67985807
    UT WOS001084249000001
    EID SCOPUS85176471034
    DOI https://doi.org/10.3390/math11194104
    AnnotationThis work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes. Moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations.
    WorkplaceInstitute of Computer Science
    ContactTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Year of Publishing2024
    Electronic addresshttps://dx.doi.org/10.3390/math11194104
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.