Počet záznamů: 1  

Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing

  1. 1.
    0577110 - ÚMCH 2024 RIV NL eng J - Článek v odborném periodiku
    Litowczenko, J. - Wychowaniec, J. K. - Zaleski, K. - Marczak, L. - Edwards-Gayle, C. J. C. - Tadyszak, Krzysztof - Maciejewska, B. M.
    Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing.
    Biomaterials Advances. Roč. 154, November (2023), č. článku 213653. E-ISSN 2772-9508
    Institucionální podpora: RVO:61389013
    Klíčová slova: groove patterns * neurite guidance cues * 3D printing
    Obor OECD: Polymer science
    Způsob publikování: Omezený přístup
    https://www.sciencedirect.com/science/article/pii/S277295082300376X?via%3Dihub

    Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite ‘stamps’ using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.
    Trvalý link: https://hdl.handle.net/11104/0346416

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.