Počet záznamů: 1  

Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns

  1. 1.
    0577005 - MBÚ 2024 RIV GB eng J - Článek v odborném periodiku
    Le, A. V. - Větrovský, Tomáš - Baručić, D. - Saraiva, J. P. - Dobbler, Priscila Thiago - Kohout, Petr - Pospíšek, M. - da Rocha, U. N. - Kléma, J. - Baldrian, Petr
    Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns.
    Molecular Ecology Resources. Roč. 23, č. 8 (2023), s. 1800-1811. ISSN 1755-098X. E-ISSN 1755-0998
    Grant CEP: GA ČR(CZ) GA21-17749S
    Výzkumná infrastruktura: e-INFRA CZ - 90140
    Institucionální podpora: RVO:61388971
    Klíčová slova: artificial intelligence * eukaryote * fungi * gene prediction * intron * metagenomics
    Obor OECD: Microbiology
    Impakt faktor: 5.5, rok: 2023 ; AIS: 2.417, rok: 2023
    Způsob publikování: Omezený přístup
    Web výsledku:
    https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13852DOI: https://doi.org/10.1111/1755-0998.13852

    Metagenomics provides a tool to assess the functional potential of environmental and host-associated microbiomes based on the analysis of environmental DNA: assembly, gene prediction and annotation. While gene prediction is straightforward for most bacterial and archaeal taxa, it has limited applicability in the majority of eukaryotic organisms, including fungi that contain introns in gene coding sequences. As a consequence, eukaryotic genes are underrepresented in metagenomics datasets and our understanding of the contribution of fungi and other eukaryotes to microbiome functioning is limited. Here, we developed a machine intelligence-based algorithm that predicts fungal introns in environmental DNA with reasonable precision and used it to improve the annotation of environmental metagenomes. Intron removal increased the number of predicted genes by up to 9.1% and improved the annotation of several others. The proportion of newly predicted genes increased with the share of eukaryotic genes in the metagenome and-within fungal taxa-increased with the number of introns per gene. Our approach provides a tool named SVMmycointron for improved metagenome annotation, especially of microbiomes with a high proportion of eukaryotes. The scripts described in the paper are made publicly available and can be readily utilized by microbiome researchers analysing metagenomics data.
    Trvalý link: https://hdl.handle.net/11104/0347997


     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.